Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Invest Dermatol ; 144(3): 601-611, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37739336

RESUMO

Premature hair graying occurs owing to the depletion of melanocyte stem cells in the hair follicle, which can be accelerated by stress caused by genetic or environmental factors. However, the connection between stress and melanocyte stem cell loss is not fully understood. MicroRNAs are molecules that control gene expression by regulating mRNA stability and translation and are produced by the enzyme Dicer, which is repressed under stress. In this study, using 2 mouse genetic models and human and mouse cell lines, we found that the inactivation of Dicer in melanocytes leads to misplacement of these cells within the hair follicle, resulting in a lack of melanin transfer to keratinocytes in the growing hair and the exhaustion of the melanocyte stem cell pool. We also show that miR-92b, which regulates ItgaV mRNA and protein levels, plays a role in altering melanocyte migration. Overall, our findings suggest that the Dicer-miR92b-ItgaV pathway serves as a major signaling pathway linking stress to premature hair greying.


Assuntos
Cor de Cabelo , Melanócitos , Camundongos , Humanos , Animais , Cor de Cabelo/genética , Melanócitos/metabolismo , Melaninas/metabolismo , Cabelo , Folículo Piloso
2.
Exp Dermatol ; 26(10): 875-882, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28191677

RESUMO

The exposure of skin to ultraviolet (UV) radiation can have both beneficial and deleterious effects: it can lead, for instance, to increased pigmentation and vitamin D synthesis but also to inflammation and skin cancer. UVB may induce genetic and epigenetic alterations and have reversible effects associated with post-translational and gene regulation modifications. ß-catenin is a main driver in melanocyte development; although infrequently mutated in melanoma, its cellular localization and activity are frequently altered. Here, we evaluate the consequence of UVB on ß-catenin in the melanocyte lineage. We report that in vivo, UVB induces cytoplasmic/nuclear relocalization of ß-catenin in melanocytes of newborn mice and adult human skin. In mouse melanocyte and human melanoma cell lines in vitro, UVB increases ß-catenin stability, accumulation in the nucleus and cotranscriptional activity, leading to the repression of cell motility and velocity. The activation of the ß-catenin signalling pathway and its effect on migration by UVB are increased by an inhibitor of GSK3ß, and decreased by an inhibitor of ß-catenin. In conclusion, UVB represses melanocyte migration and does so by acting through the GSK3-ß-catenin axis.


Assuntos
Movimento Celular/efeitos da radiação , Melanócitos/efeitos da radiação , Melanoma/metabolismo , Transporte Proteico/efeitos da radiação , Raios Ultravioleta , beta Catenina/metabolismo , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Queratinócitos , Melanócitos/fisiologia , Camundongos , Fosforilação/efeitos da radiação , Transdução de Sinais/efeitos da radiação , beta Catenina/antagonistas & inibidores , beta Catenina/genética
3.
Pigment Cell Melanoma Res ; 29(5): 524-40, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27311806

RESUMO

ß-catenin is known as an Armadillo protein that regulates gene expression following WNT pathway activation. However, WNT-independent pathways also activate ß-catenin. During the establishment of the melanocyte lineage, ß-catenin plays an important role. In the context of physiopathology, ß-catenin is activated genetically or transiently in various cancers, including melanoma, where it can be found in the nucleus of tumors. In this review, we discuss alternative pathways that activate ß-catenin independent of WNTs and highlight what is known regarding these pathways in melanoma. We also discuss the role of ß-catenin as a transcriptional regulator in various cell types, with emphasis on the different transcription factors it associates with independent of WNT induction. Finally, the role of WNT-independent ß-catenin in melanocyte development and melanomagenesis is also discussed.


Assuntos
Regulação Neoplásica da Expressão Gênica , Melanoma/patologia , Fatores de Transcrição/metabolismo , beta Catenina/metabolismo , Animais , Humanos , Melanoma/metabolismo , Transdução de Sinais , Via de Sinalização Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...